¿Tienes alguna pregunta?
Mensaje enviado Cerrar
4.63
211 valoraciones

Inteligencia artificial explicada fácilmente para principia

Fundamentos de los sistemas agente y multi-agente, redes neuronales, aprendizaje profundo, aprendizaje automático y visi
4.731 Estudiantes inscritos
  • Descripción
  • Currículum
  • Reseñas

Este curso en video sobre inteligencia artificial está dirigido a principiantes y está diseñado para enseñarte los conceptos básicos dentro del desarrollo histórico de la IA. Por este motivo, nuestro viaje comienza con la sección “Introducción y antecedentes históricos de la IA”.

Temas y contenidos de las lecciones:

I. Introducción y antecedentes históricos
• ¿Qué es la IA? – Una consideración filosófica
• IA fuerte y débil
• La prueba de Turing
• El nacimiento de la IA
• La era de las grandes expectativas
• Alcanzando a la realidad
• Cómo enseñar a una máquina a aprender
• Sistemas distribuidos en la IA
• Aprendizaje profundo, aprendizaje automático, procesamiento de lenguaje natural

II. El solucionador general de problemas

• Programa de prueba – El Teórico Lógico
• Ejemplo de “Resolución de problemas humanos” (Simon)
• La estructura de un problema

En esta sección, primero abordamos las técnicas iniciales de IA. Aprenderás sobre los conceptos y sistemas de ejemplo famosos que desencadenaron esta fase temprana de euforia.

III. Sistemas expertos

• Conocimiento fáctico y conocimiento heurístico
• Marcos, ranuras y relleno
• Encadenamiento hacia adelante y hacia atrás
• El programa MYCIN
• Probabilidades en sistemas expertos
• Ejemplo: probabilidad de grietas finas

En esta sección, discutimos los sistemas expertos que, al igual que los solucionadores de problemas generales, sólo tratan problemas específicos. Pero en cambio, usan cantidades ingentes de reglas y hechos como base de conocimiento.

IV. Redes neuronales

• La neurona humana
• Procesamiento de señales de una neurona
• El perceptrón

Esta sección presagia un retorno a la idea de poder reproducir el cerebro humano y así hacerlo accesible al procesamiento de información digital en forma de redes neuronales. Analizamos los primeros enfoques y destacamos las ideas que aún faltaban para ayudar a las redes neuronales a lograr un verdadero avance.

V. Aprendizaje automático (aprendizaje profundo y visión artificial)

• Ejemplo: cosecha de patatas.
• El año de nacimiento del Deep Learning
• Capas de redes de aprendizaje profundo
• Visión artificial / Visión artificial
• Red neuronal convolucional.

La idea de un agente y su interacción en un sistema de agentes múltiples se describe en la quinta sección. El objetivo principal de un sistema de este tipo es distribuir la complejidad en varias instancias de menor complejidad.

La sexta sección trata sobre el avance de las redes neuronales multicapa, el aprendizaje automático, la visión artificial, el reconocimiento de voz y algunas otras aplicaciones de la IA en el presente.

4.63
211 valoraciones
Estrellas 5
118
Estrellas 4
52
Estrellas 3
32
Estrellas 2
6
Estrellas 1
3
7297
Inteligencia artificial explicada fácilmente para principia
4.63
211 valoraciones
Obtener este curso
Compartir
Garantía de devolución de dinero de 30 días
Detalles del curso
Vídeo 1 horas
Certificado de finalización
Acceso completo de por vida
Acceso en el móvil y en la televisión